

Seminar zur Vorlesung Teilchendetektoren und Experiment an ELSA

Übersicht

- Einleitung
- Simulation mit Geant4
- generierte Daten
- Zusammenfassung

Simulation

- Mathematische Modellierung eines Problems
- Vergleich Theorie $\leftarrow \rightarrow$ Praxis
- Vorteil: Parameter leichter änderbar
- Aufgabenstellung mit statistischen Eigenschaften:

Verwendung von Zufallszahlen (Monte-Carlo-Simulation)

Was wird simuliert?

physikalische Prozesse

- z.B. Compton-Streuung, Bremsstrahlung, Paarerzeugung, etc.
- Simulation der physikalischen Prozesse auf Grund von Wahrscheinlichkeiten
- Wirkungsquerschnitte gehen als bekannt in die Simulation ein
- Zufallszahl bestimmt den aktuellen Prozess
- Detektorsignal

Ziele

Vorbereitung eines Experiments

- Durchführbarkeit
- Optimaler Aufbau
- Zählratenabschätzung
- Vergleich experimenteller Daten mit der Simulation
- Korrektur der Daten mit Hilfe der Simulation
 - □ Akzeptanz
 - □ Winkeł / Energiekorrektur

Zufallszahlen

echte Zufallszahlen

- statistische Prozesse (Münzwerfen, Lotto, Würfeln, radioaktiver Zerfall,...)
- Werte nicht vorhersagbar und unkorelliert
- nicht reproduzierbar
- Pseudozufallszahlen
 - Erzeugt durch einen deterministischen Algorithmus
 - einige Algorithmen mit guten statistischen Eigenschaften
 - reproduzierbar

→ Rechner kann nur Pseudozufallszahlen erzeugen

Linearer Kongruenzgenerator (LCG)

"Zufallszahlen" werden bestimmt nach:

 $x_n = (a \cdot x_{n-1} + c) \mod m$

m,a,c natürliche Zahlen, konstant; xo Startwert

- Periodenlänge maximal m
- Typische Werte:

 $m = 2^{32} \approx 4,3 \cdot 10^9$ oder $m = 2^{31} - 1 \approx 2 \cdot 10^9$

- → Periodenlänge für Simulationen zu kurz
- → Bessere Pseudozufallszahlengeneratoren haben eine Periodenlänge von $2^{100} \approx 1,3 \cdot 10^{30}$

Monte-Carlo-Simulation

- Stochastisches Berechnungsverfahren
- Beispiel:

Bestimmung von Pi am Einheitskreis

- \Box Erzeuge gleichverteilte Punkte mit $x, y \in [0,1]$
- □ Wenn $d((x, y), (0, 0)) \le 1$ dann Punkt im Kreis
- Verhältnis der Anzahl von Punkten im Kreis zu allen Punkten liefert Fläche A

 $\Box \ \pi = 4 \cdot A$

- Zur Integralrechnung geeignet
- Benannt nach dem f
 ür sein Kasino bekannten Stadtteil Monte Carlo (Monaco)

Simulation mit Geant4

Geant4

- Werkzeug zur Simulation von Teilchendurchgängen durch Materie
- Entwickelt von einer Kollaboration am CERN
- Open Source (Geant4 Software License)
- Weltweiter Standard f
 ür Simulationen
- Vielfältige Einsatzgebiete
- Beschränkung auf gewollte Prozesse möglich

Aufbau des Experiments

Virtueller Aufbau des Experiments

- Beschreibung per XML-Datei
- Wichtigste Bestandteile:
 - Beam y-detector 1 Target π^0 y-detector 2 Detektor Ereignis veto 1 Deltaresonanz 29.40 29.40 veto 2 72.30 tagged Y-beam MMMMMM $z-axis \equiv \gamma-direction$ target

Aufbauprinzip des Detektors

2 Blöcke mit je 9 Kristallen

Auch in der Simulation Aufteilung auf zwei logische Blöcke

□Vorteile:

- übersichtlicherer Code
- Detektorposition einfacher anzupassen

Beschreibung eines Blocks

<G4CBLogicalVolume Name="SpiderBlock_Logic_1" Number="2" Material="Air" Red="1.0" Green="0.0" Blue="1.0" Alpha="1.0" Visible="No" DaughtersInvisible="No" Sensitive="No" Debug="9">

<G4CBBox aUnit="deg" Unit="mm" Name="Box_Solid_1" x="100.0" y="250.0" z="220.0"/>

<G4CBVector3 Unit="mm" x="-306.0" y="-120.0" z="330.0" />

<G4CBRotationMatrix aUnit="deg" x="0.0" y="43.0" z="0.0" />

<G4CBMaterial/>

<CBTIncludeXML File="SpiderBlock1.xml"/>

</G4CBLogicalVolume>

Beschreibung eines Kristalls

<G4CBLogicalVolume Name="Spider_Logic_1" Number="1" Material="CsITI" Red="1.0" Green="1.0" Blue="0.0" Alpha="1.0, Visible="Yes" DaughtersInvisible="No" Sensitive="yes" Debug="9">

<G4CBTrap Unit="mm" aUnit="deg" Name="Crystal" Z="150.0" Theta="0.0" Phi="0.0" Y1="26.887" X1="28.767" X2="28.926" Alpha1="0" Y2="58.332" X3="60.083" X4="60.418" Alpha2="0"/>

<G4CBVector3 Unit="mm" x="0.0" y="42.5" z="0.0" /> <G4CBRotationMatrix aUnit="deg" x="0.0" y="0.0" z="0.0" /> <G4CBMaterial/> </G4CBLogicalVolume>

Vergleich der Aufbauten

Unterschiede zwischen Simulation und Experiment

- Keine Vetos
- Keine Ausleseelektronik
- Nur Kristalle ohne Ummantelung
- Keine Ausdehnung des Strahls

Ablauf der Simulation

Betrachtete Reaktion:

$$\gamma + p \to \Delta^{\!\!\!+} \to p + \pi^0 \to p + \gamma + \gamma$$

- $\gamma + p \rightarrow \Delta^+ \rightarrow p + \pi^0$ wird nicht simuliert, sondern als gewünschtes Ereignis immer berechnet
- Weiterer Zerfall wird gemäß Kinematik simuliert

Simulationsschritte

* G4Track Information:			Particle = e+, T		rack ID = 2199,		Parent ID = 2196		

Step#	X (mm)	Y (mm)	Z (mm)	KinE(MeV)	dE(MeV)	StepLeng	TrackLeng	NextVolume	ProcName
0	-330	31.6	-110	30.8	0	0	0	Spider_Logic_18	initStep
1	-332	31.8	-111	26.2	1.8	1.83	1.83	Spider_Logic_18	eBrem
2	-336	31.9	-112	22.7	2.26	3.92	5.75	Spider_Logic_18	eBrem
3	-336	31.8	-112	22.4	0.227	0.505	6.25	Spider_Logic_18	eBrem
[]									
14	-346	23.3	-109	0	0.21	0.184	28.2	Spider_Logic_18	eIoni
15	-346	23.3	-109	0	0	0	28.2	Spider_Logic_18	annihil

* G4Trac	ck Inform	ation:	Particle	e = gamma,	Track]	ID = 2211	, Parent	ID = 2199	

Step#	X (mm)	Y (mm)	Z (mm)	KinE(MeV)	dE(MeV)	StepLeng	TrackLeng	NextVolume	ProcName
0	-346	23.3	-109	0.511	0	0	0	Spider_Logic_18	initStep
1	-346	32.5	-103	0.511	0	11.1	11.1	Spider_Logic_16	Transportation
2	-346	66.7	-79.8	0.175	0	41.2	52.4	Spider_Logic_16	compt
3	-346	66.6	-80.1	0	0.036	0.289	52.6	Spider_Logic_16	phot

Visualisierung der Simulation

Wechselwirkungsorte

Generierte Daten (Analyse mit root)

Θ – Verteilung des π^0

- Im CMS Maximum bei ~ 90°
- Im Laborsystem Maximum bei ~72°

Θ – Verteilung der Photonen

■ Photonverteilung im CMS isotrop → Maximum im Laborsystem bei ~72°

Akzeptanz

Invariante Masse

 Statistik durch kleine Raumwinkelabdeckung des Detektors stark eingeschränkt

Zusammenfassung

Simulation

- basiert auf statistischen Berechnungen
- Wechselwirkung von Teilchen mit Materie
- unterstützt die Durchführung von Experimenten
- \Box ermöglicht Vergleich Theorie $\leftarrow \rightarrow$ Experiment
- Erste Simulation f
 ür das Studentenexperiment Weiteres Vorgehen:
 - exakte Rekonstruktion des Aufbaus
 - gleiche Auswertung f
 ür experimentelle und simulierte Daten