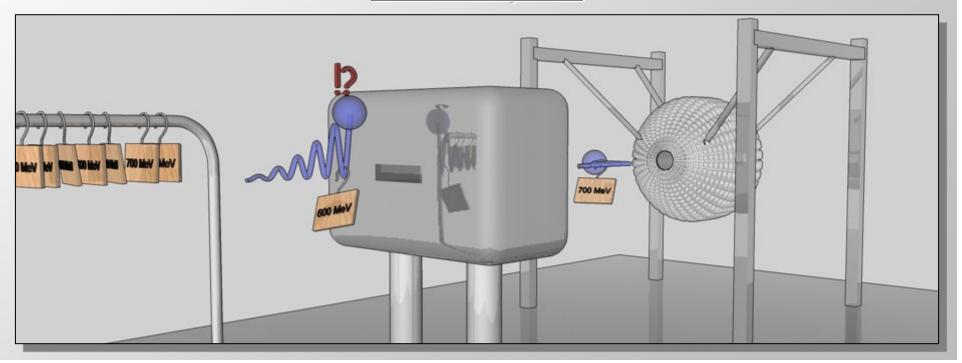
Teilchendetektoren und Experiment an ELSA

Erzeugung energiemarkierter Photonen Photonenpolarisation Photonenfluss



Übersicht

- I.) Erzeugung energiemarkierter Photonen
 - a) Energiemarkierung
 - b) Produktionsmechanismen
- II.) Polarisation der Photonen
 - a) Linearpolarisation
 - b) Zirkulare Polarisation
 - c) Moeller-Polarimetrie
- III.) Bestimmung des Photonenflusses

I.) Erzeugung energiemarkierter Photonen

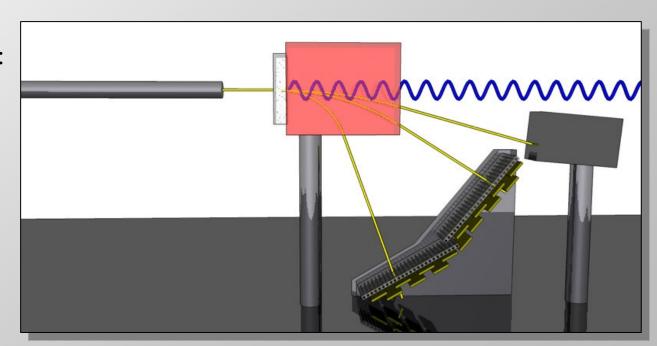
a) Energiemarkierung

- Das Taggingsystem unseres Experiments

Aufgaben:

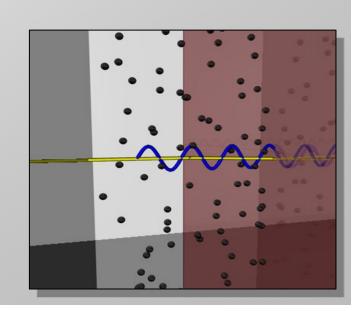
- 1. Produktion der Photonen
- 2. Messung der Photonenenergie

Aufbau (Beispiel):

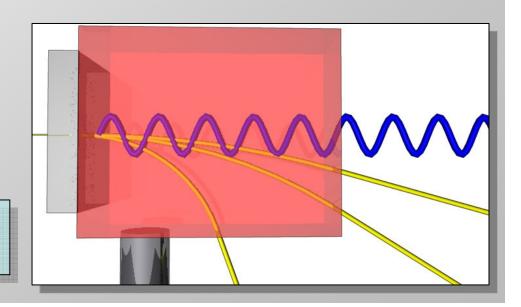


- Taggingsystem: Bremsstrahltarget
- Elektronen aus Strahl treffen auf Radiator, erzeugen Photonen durch Bremsstrahlung.
- Radiatordicke bestimmt Bremsstrahlrate und Mehrfachstreurate
- Typische Dicke ~ 1/1000 Strahlungslängen
- Elektron verliert Energie durch Bremsstrahlung:

$$\left| E_e = E_0 - E_{\gamma} \quad \iff \quad E_{\gamma} = E_0 - E_e \right|$$



- Taggingsystem: Taggingmagnet
- Trennt Elektronen (gestreute und ungestreute) von den Photonen
- Ungestreute: Geringe Ablenkung, Vernichtung im Beam-Dump
- Gestreute: Energieabhängige Ablenkung, Detektion im Tagginghodoskop
- Magnetfeld soll ungestreute Elektronen für alle Strahlenergien in Beamdump lenken
- Variiere Magnetfeld mit Strahlenergie
- => Von Strahlenergie unabhängiger Auftreffpunkt am Hodoskop!



I.) Erzeugung energiemarkierter Photonen

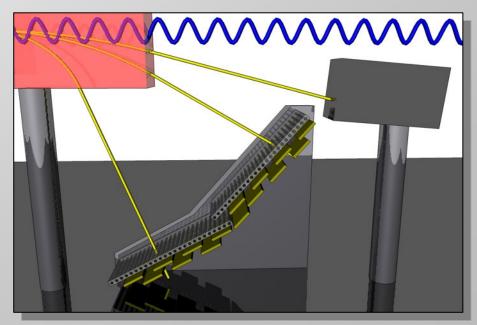
- Taggingsystem: Ablenkung im Magnetfeld
- Elektronen als geladene Teilchen werden abgelenkt
- Teilchen werden auf Kreisbahn gelenkt: $\vec{F}_{mag} = e \vec{v} \times \vec{B}$
- Gleichgewicht aus Zentripetal & Lorentzkraft ergibt Zusammenhang zwischen Kreisradius und Impuls (Magnetfeld senkrecht zum Impuls):

$$F_{mag} = evB = \frac{mv^2}{r} = F_{zp}$$

$$\Rightarrow p = eBr$$

- Messung des Radius liefert mit bekannter Elektronenmasse die Energie des Elektrons
 - ⇒ Energie des Photons

- Taggingsystem: Tagginghodoskop und Beamdump
- Hodoskop liefert Ortsinformation über gestreute Elektronen
- Besteht aus 14 Szintillationszählern (Zeitzähler) und 2 Proportionaldrahtkammern (Ortsauflösung)
- In unserem Fall: Nur Zeitzähler
- Beamdump vernichtet Elektronen, die keine Bremsstrahlung gemacht haben



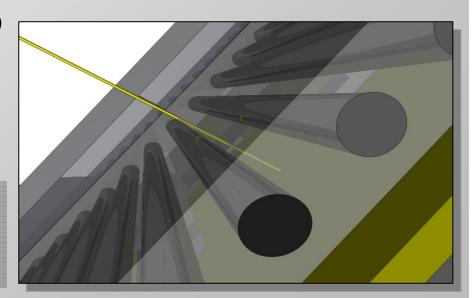
I.) Erzeugung energiemarkierter Photonen

a) Energiemarkierung

- Taggingsystem: Proportionaldrahtkammern
- Bestimmen die Ortsauflösung, bestehen aus 144 bzw. 208 Drähten.
- Folien liegen auf negativer HV, Drähte auf Masse
 - => Großer Feldgradient, Gasverstärkung
- Fehler auf Elektronenenergie (einziger) Faktor im Fehler für Photonenenergie:

$$\frac{\Delta k}{k} = \frac{\sqrt{(\Delta E_0)^2 + (\Delta E_e)^2}}{E_0 - E_e}$$

Gemessener Ort und Fehler hängen direkt mit der Photonenenergie, ihrem Fehler und damit auch \sqrt{s} zusammen!



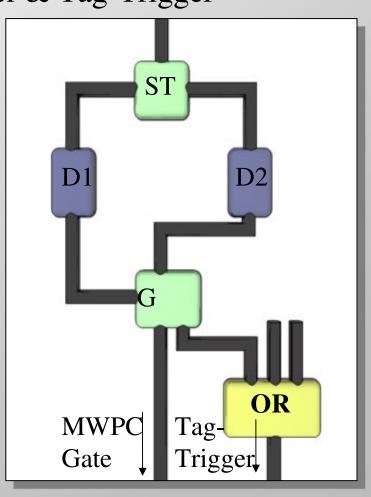
I.) Erzeugung energiemarkierter Photonen

- Taggingsystem: Auslese der Zeitzähler
- Zeitzähler werden auf beiden Seiten ausgelesen
- Ausgelesene Signale werden zur Koinzidenz gebracht
- Unterdrückung des Rauschens
 ⇒ Wahrscheinlichkeit, dass zwei
 Photomultiplier gleichzeitig
 Rauschsignal liefern ist praktisch null.



I.) Erzeugung energiemarkierter Photonen

- Taggingsystem: Signal der Zeitzähler & Tag-Trigger
- a) Analogpuls wird im Signalteiler ST geteilt
- b) High-Low-Koinzidenz:
 - High-Kreis: Diskriminator D1 mit hoher Schwelle lässt nur echte Signale passieren
 - Low-Kreis: Niedrige Schwelle
 - Koinzidenz von High-Low: High öffnet Gate G für Low-Puls
- c) ODER der High-Low Koinzidenzen aller Zeitzähler bilden Tag-Trigger
- d) High-Low Koinzidenz eines Zählers bildet Auslese-Gate für entsprechende Drähte



I.) Erzeugung energiemarkierter Photonen

a) Energiemarkierung

- Taggingsystem: Kalibration

Feste niedrige Energie (ab ca. 600 MeV aufwärts), kein Radiator, niedrige Rate:

- Stelle Strom durch Magneten auf Ablenkung zum Beamdump ein
- Erhöhe Strom durch Magneten → Stärkere Ablenkung → Simuliere somit geringere Elektronenenergie nach "Bremsstrahlung"

- Beispiel 1 GeV-Strahl: B(1 GeV) Beamdump

B(2 GeV) 50% Elektronenergie

B(3 GeV) 33% Elektronenergie, usw

- verringere Stahlenergie für Kalibration bei kleineren Elektronenergien
- Aber: Strahlinstabilitäten bei zu kleinen Energien

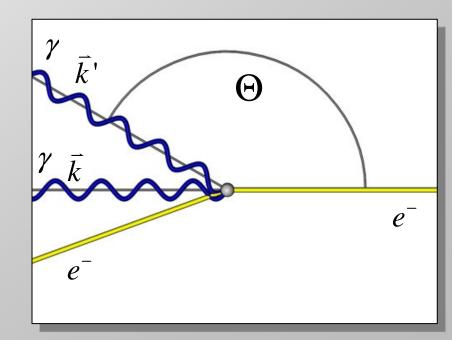
b) Produktionsmechanismen: Laser-Rückstreuung

- Laser-Rückstreuung

- Streuung von Laserphotonen an Elektronen aus Strahl unter 180°
- Photonenergie stark winkelabhängig

$$k'(\Theta) = k \cdot \frac{1}{1 + \gamma \cdot (1 - \cos \Theta)}$$

$$k'(\Theta = \pi) = \frac{k}{1 + 2 \cdot \gamma}$$



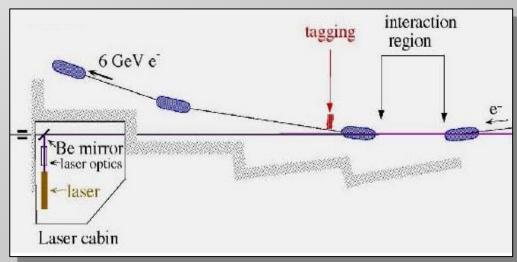
I.) Erzeugung energiemarkierter Photonen

b) Produktionsmechanismen: Laser-Rückstreuung

- Laser-Rückstreuung: Vor- und Nachteile
- Vorteile
 - ⇒ Lineare und zirkulare Polarisation proportional zur Polarisation des Lasers, damit sehr hohe Polarisationen erreichbar
 - ⇒ Energiespektrum der gestreuten Photonen variiert nur wenig mit Energie der einfallenden Photonen
 - ⇒ Zwei Tagging Methoden

b) Produktionsmechanismen: Laser-Rückstreuung

- Laser-Rückstreuung: Vor- und Nachteile
- Vorteil: Zwei Tagging Methoden
 - ⇒ Intern: Messe Abweichung der Elektronen von Sollbahn nach Bremsstrahlung
 - ⇒ Extern: Elektronen werden nach Bremsstrahlung extrahiert und in Spektrometer analysiert.



b) Produktionsmechanismen: Laser-Rückstreuung

- Laser-Rückstreuung: Vor- und Nachteile
- Nachteile:
 - \Rightarrow Geringer Fluss (~10³ Hz)
 - ⇒ Damit: viel größere Messzeit nötig

I.) Erzeugung energiemarkierter Photonen

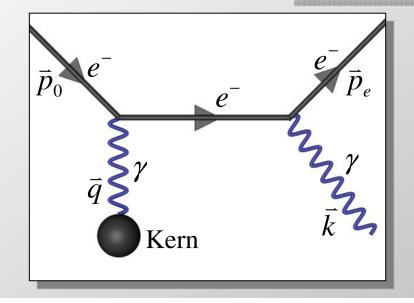
b) Produktionsmechanismen: Bremsstrahlung

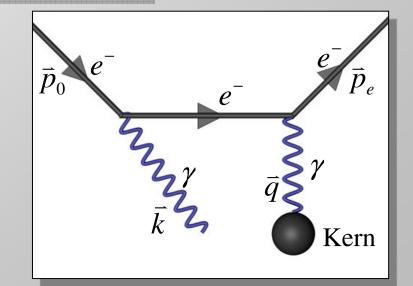
- Bremsstrahlung im Feld eines Atomkerns

$$e^{-} + X \rightarrow e^{-} + X + \gamma$$

$$E_{0} = E_{e} + T + E_{\gamma}$$

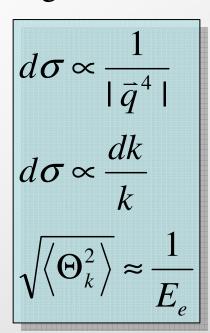
$$\vec{p}_{0} = \vec{p}_{e} + \vec{q} + \vec{k}$$





b) Produktionsmechanismen: Bremsstrahlung

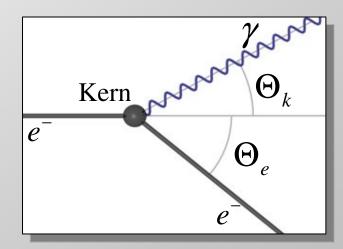
- Eigenschaften des Wirkungsquerschnittes der Bremsstrahlung



-WQ aus Born'scher Näherung mit Potential

$$V(q) = -\frac{4\pi \cdot Ze^2}{\vec{q}^2}$$

-Näherung für Winkelverteilung im relativistischen Fall gültig.



b) Produktionsmechanismen: Bremsstrahlung

- Abschirmung des Coulombfeldes & Atomformfaktor F(q)
- Ladung des Kerns wirkt abgeschirmt wenn Photonemission bei:

$$R_{\text{max}} > a_0 \cdot Z^{-\frac{1}{3}}$$
 (in diesem Fall beginnt Abschirmung durch Elektronen)

$$R_{\text{max}} = \frac{1}{|\vec{q}_{\text{min}}|} \qquad |\vec{q}_{\text{min}}| = |\vec{p}_0| - |\vec{p}| - |\vec{k}| \approx \frac{k}{2E_0 E_e}$$

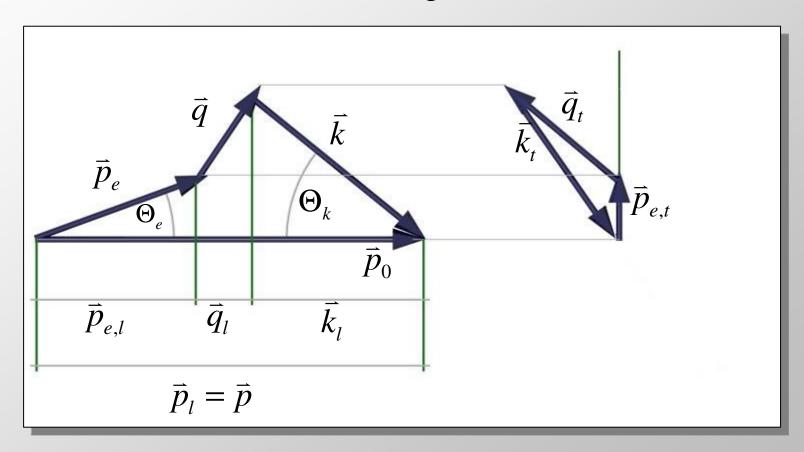
$$\Rightarrow R_{\text{max}} = \frac{2E_0 E_e}{k} \ge a_0 \cdot Z^{-\frac{1}{3}}$$

$$V'(q) = -\frac{4\pi \cdot e^2}{\vec{q}^2} \cdot (V(q) - F(q)) \qquad F(q) = \int d^3r \left(\rho(r) \cdot e^{-i\vec{q}\vec{r}}\right)$$

I.) Erzeugung energiemarkierter Photonen

b) Produktionsmechanismen: Bremsstrahlung

- Kinematik der Bremsstrahlung



b) Produktionsmechanismen: Bremsstrahlung

- Erlaubte Impulsüberträge q

Longitudinal:

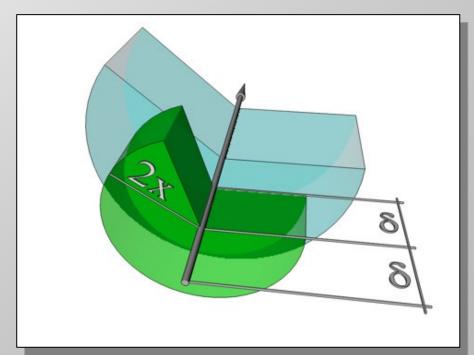
$$\vec{q}_{l,\text{min}} \approx \frac{k}{2E_0 E} = \frac{1}{2E_0} \cdot \frac{x}{1-x} = \delta(x) \quad x = \frac{k}{E_0}$$

$$\bar{q}_{l,\text{max}} \approx 2 \cdot \delta(x)$$

Transversal:

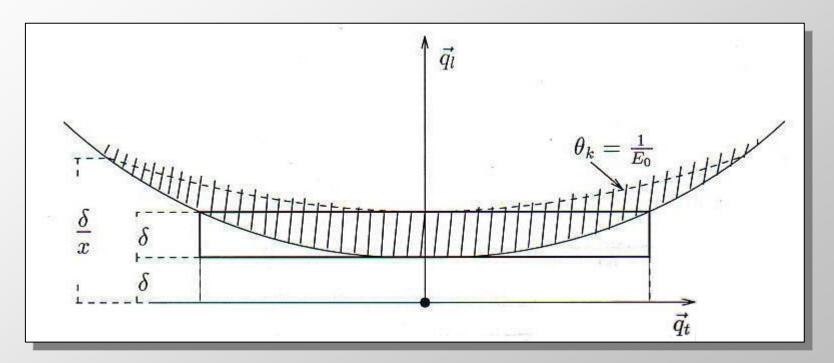
$$\vec{q}_{t,\text{min}} = 0$$

$$\vec{q}_{t,\text{max}} = 2 \cdot x$$



b) Produktionsmechanismen: Bremsstrahlung

- Graphische Darstellung der erlaubten Impulsüberträge q



Amorpher Radiator: "pancake" kontinuierlich besetzt, kein Impulsübertrag ist ausgezeichnet.

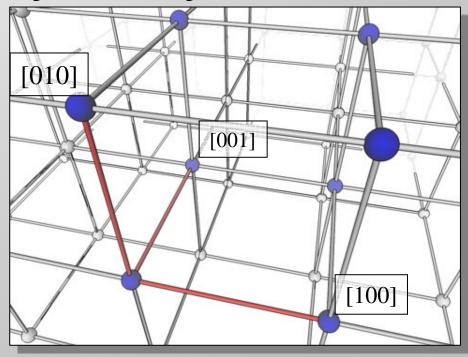
$$\delta(x) \le \vec{q}_t \le 2 \cdot \delta(x)$$
$$0 \le \vec{q}_t \le 2 \cdot x$$

II.) Polarisation der Photonen

- Bremsstrahlung am Kristall
- Aufbau durch periodisches Gitter (Ortsraum → Fourier → Impulsraum)
- Gitter beschrieben durch Gittervektor (Impulsraum: reziproker Gittervektor)
- -Bragg-Bedingung:

$$\vec{q} = \vec{g}$$

- Dieser Impulsübertrag wird vom gesamten Gitter übernommen
 - ⇒ Viele Atome nehmen am Prozess teil
 - ⇒ Kohärente Bremsstrahlung



II.) Polarisation der Photonen

- WQ der kohärenten Bremsstrahlung
- Potential erhält Kristallstruktur: $V(\vec{r}) = \sum_{i=1}^{\#Atome} V(\vec{r} \vec{r}_i)$
- Nach Umformungen, Born'scher Näherung:

$$d\sigma_{Kristall} \propto \left\{ \sum_{\vec{g}} |S(g)|^2 \delta(\vec{q} - \vec{g}) \right\} \cdot d\sigma_{Amorph} \equiv D(\vec{q}) \cdot d\sigma_{Amorph}$$

- $|S(g)|^2$ Korrekturfaktor: Schließt gewisse rez. Gittervektoren aus
 - ⇒ Für qualitative Diskussion nicht wichtig
- Zusätzliche Einschränkung an Impulsüberträge
- Neben Einschränkung der q auf "pancake"

a) Linearpolarisation durch kohärente Bremsstrahlung

- Debye-Faktor: Inkohärente Beiträge
- Beachte endliche Temperaturen \longrightarrow thermische Schwingungen um Ruhelage $\Rightarrow \vec{g} \rightarrow \vec{g}(\vec{r},t)$
- -Wahrscheinlichkeit für kohärente Bremsstrahlung:

$$f(q^2) = \exp(-A(T) \cdot \bar{q}^2)$$

wobei $A(T) \propto \frac{T}{\Theta}$

mit Θ: Debye – Temperatur

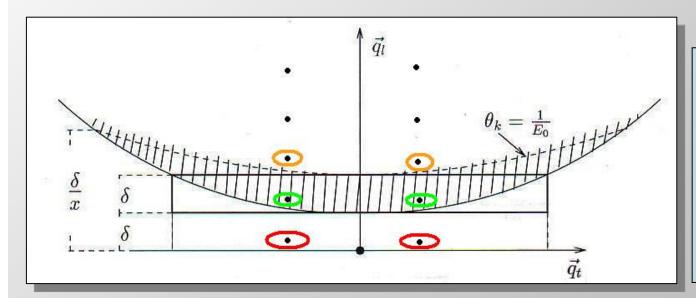
⇒ Verwende Kristalle mit großer Debye-Temperatur

$$\Rightarrow d\sigma_{Kristall} = [f(\vec{q}^2) \cdot D(\vec{q}) + (1 - f(\vec{q}^2)) \cdot N] \cdot d\sigma_{Brems}$$

a) Linearpolarisation durch kohärente Bremsstrahlung

- Erlaubte Impulsüberträge in kohärenter Bremsstrahlung
- Feste Strahlenergie: Steigende Photonenergie

$$\Rightarrow \delta(x) = \frac{x}{1-x}$$
 $x = \frac{k}{E_0}$ wächst.

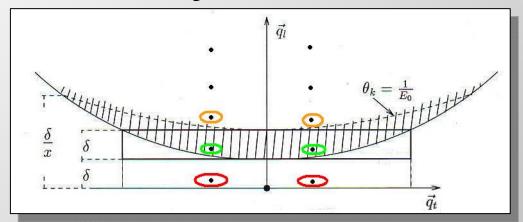


Impulsübertrag muss:

- a) Kinematisch möglich sein
- b) Einem Reziproken Gittervektor entsprechen

a) Linearpolarisation durch kohärente Bremsstrahlung

- Erlaubte Impulsüberträge in kohärenter Bremsstrahlung
- Feste Strahlenergie: Steigende Photonenergie → Untere Kante wächst
 - ⇒ Orange markierte Punkte rücken näher an den erlaubten Bereich.
 - ⇒ Grün markierte Punkte tragen abrupt nicht mehr bei, wenn sie unter die Kante rutschen
 - ⇒ Amorpher Radiator: "kontinuierlicher" Aus/Eintritt in kin. mögliche Zone.

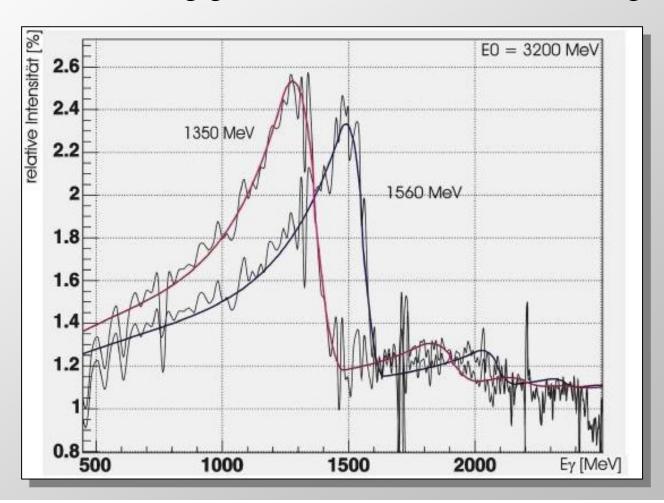


Kontinuierliche Intensitätszunahme bei Eintreten in erlaubten Bereich.

Unstetiger Intensitätseinbruch bei Verlassen des kinematisch möglichen Bereichs.

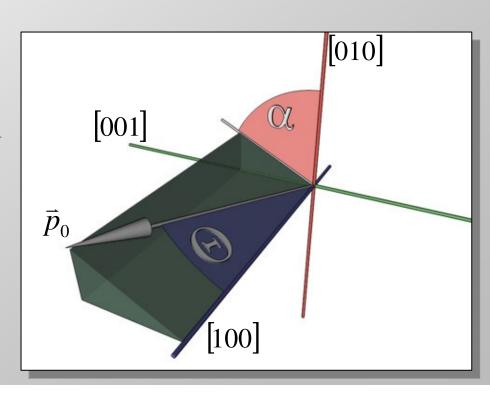
a) Linearpolarisation durch kohärente Bremsstrahlung

- Intensitätsabhängigkeit von relativer Photonenenergie



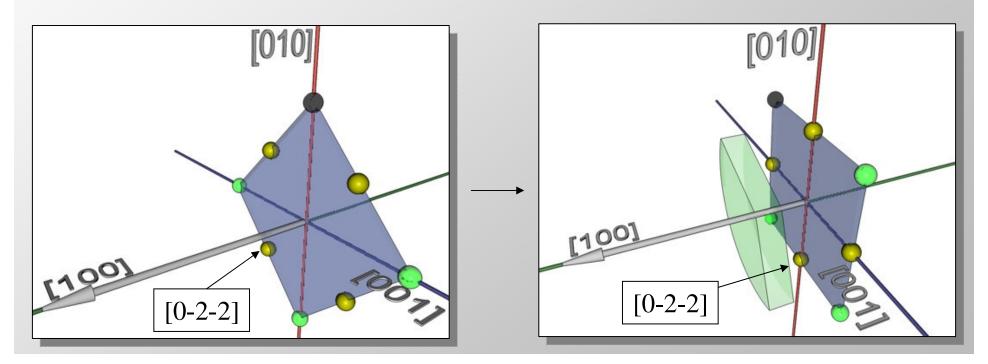
- Orientierungen des Kristalls im Strahl
- $\alpha = 0$ und $\theta = 0$: $\vec{p}_0 \parallel [100]$ entspricht "Nullrichtung"
- Ziel: Nur ein rez. Gittervektor trägt zur Bremsstrahlung bei
- Allgemein: Alle rez. Gittervektoren im kin. möglichen Bereich tragen zum kohärenten Anteil bei
- Betrachte nur kleine Gittervektoren kürzer als [004], da:

$$d\sigma \propto \frac{1}{|\vec{q}^4|} = \frac{1}{|\vec{g}^4|}$$



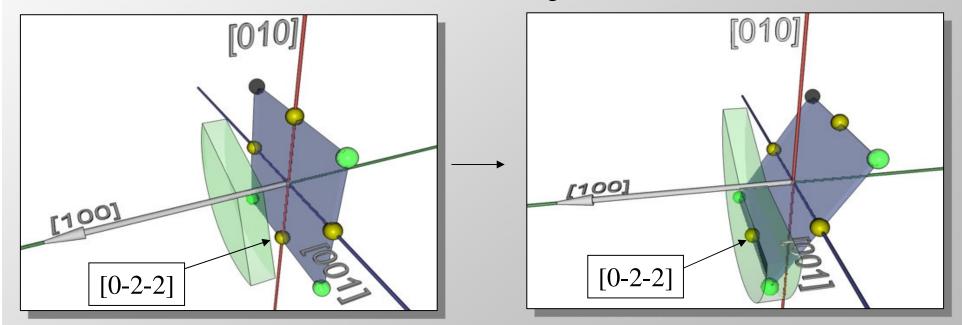
II.) Polarisation der Photonen

- Ausrichtung des Kristalls für polarisierte Photonen
- Wähle $\alpha \neq n \cdot \pi/2$ und $\theta \neq 0$
- Drehe zunächst um [100], um 45°



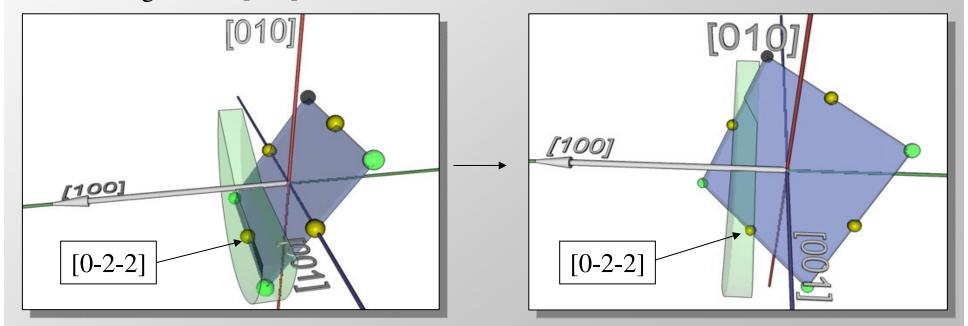
II.) Polarisation der Photonen

- Ausrichtung des Kristalls für polarisierte Photonen
- Wähle $\alpha \neq n \cdot \frac{\pi}{2}$ und $\theta \neq 0$
- Danach werden die rez. Gittervektoren [00-4], [0-2-2] und [0-40] durch Drehung um die [001]-Achse in den erlaubten Bereich gedreht.

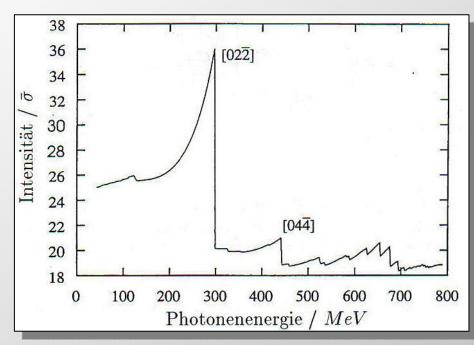


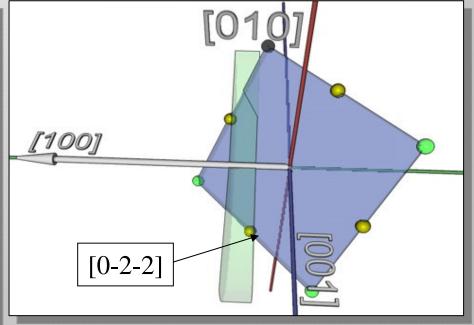
II.) Polarisation der Photonen

- Ausrichtung des Kristalls für polarisierte Photonen
- Wähle $\alpha \neq n \cdot \frac{\pi}{2}$ und $\theta \neq 0$
- Zum Abschluss wird [0-2-2] an die untere Kante des "pancake" gebracht, durch Drehung um die [010]-Achse

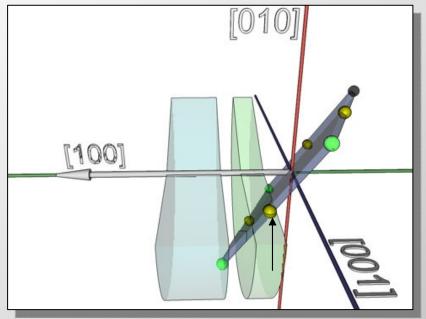


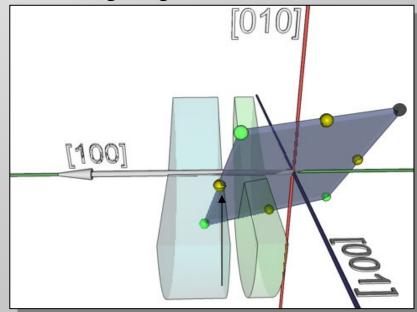
- Spektrum des ausgerichteten Kristalls
- Größter Beitrag zum WQ nun von $\vec{q} = \vec{g} = [0-2-2]$
- Polarisierte Photonen in der durch (\vec{q}, \vec{p}_0) aufgespannten Ebene.





- Polarisation bei höheren Photonenenergien
- Verschiebung der Diskontinuitätsstelle zu höheren Photonenenergien durch weitere Drehung
- Rez. Gittervektor wird in Bereich der höheren Energien gedreht (hier um [010]).

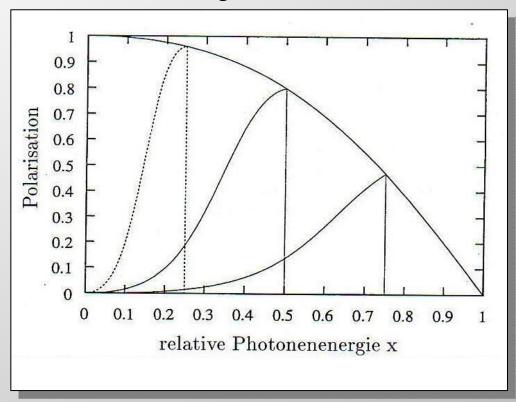




a) Linearpolarisation durch kohärente Bremsstrahlung

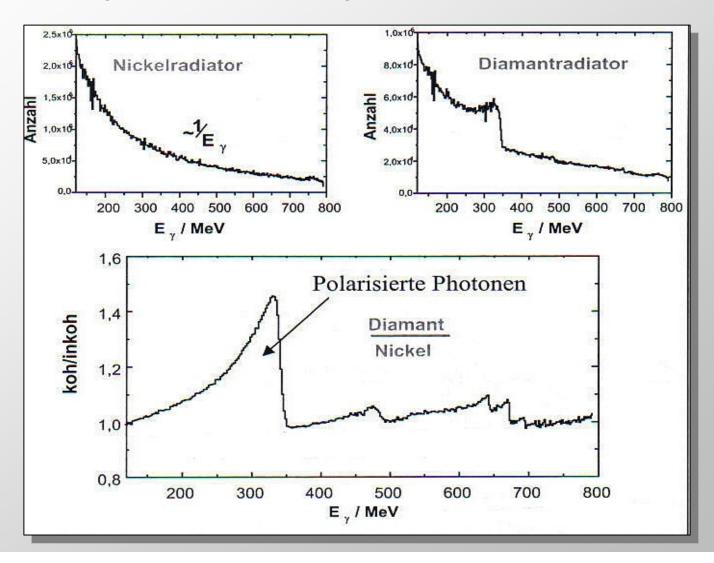
- Polarisationsgrad

- Polarisation maximal wenn ausgezeichneter rez. Gittervektor maximal beiträgt



a) Linearpolarisation durch kohärente Bremsstrahlung

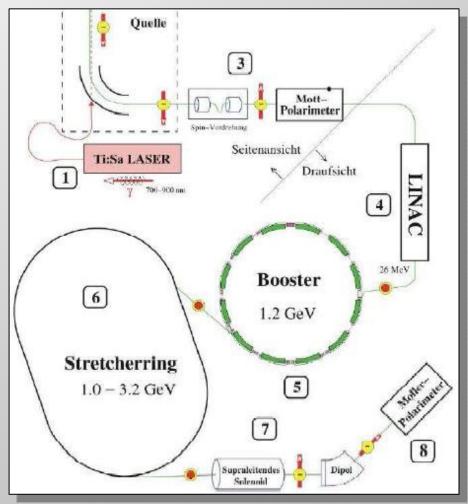
- Messung des Polarisationsgrades



b) Zirkularpolarisation durch polarisierte Elektronen

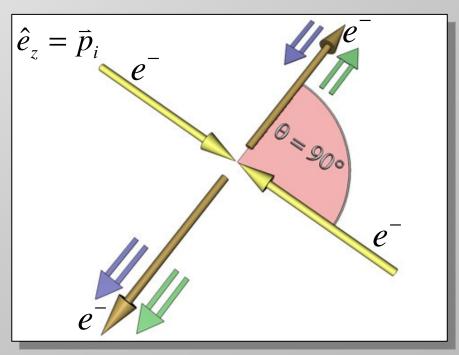
- Zirkular polarisierte Photonen

- Zirkulare Photonenpolarisation durch Bremsstrahlung longitudinal polarisierter Elektronen
- Longitudinalpolarisation der Elektronen für den Beschleuniger sehr aufwendig



c) Moeller-Polarimetrie

- Idee der Moeller-Polarimetrie
- Methode um die Polarisation der Elektronen zu messen
- Basiert auf Moellerstreuung (spin-abhängig): $e^-e^- \rightarrow e^-e^-$
- Spins parallel → Spinfunktion sym.
- ⇒ Ortsfunktion antisymmetrisch
- ⇒ Kann in Polynome ungerader Ordnung entwickelt werden
- \Rightarrow Diese verschwinden bei $\Theta = 90^{\circ}$



II.) Polarisation der Photonen

c) Moeller-Polarimetrie

- Wirkungsquerschnitt der Moeller-Polarimetrie

- Wirkungsquerschnitt besteht aus zwei Anteilen (Näherung für große Energien):

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma_0}{d\Omega}\right) \cdot \left[1 + \sum_{j=1}^{3} a_{jj}(\Theta) P_j^S P_j^T\right]$$

Darin: - Analysierstärkekoeffizient a_{jj} : $a_{33} >> a_{11}, a_{22}$

- j-Komponente der Target (T) und Strahlpolarisation (S) P_j^T , P_j^S

c) Moeller-Polarimetrie

- Messung der Strahlpolarisation
- Zählratenasymmetrie:

$$A = \frac{\sigma^{\uparrow\downarrow} - \sigma^{\uparrow\uparrow}}{\sigma^{\uparrow\downarrow} + \sigma^{\uparrow\uparrow}} = \frac{N^{\uparrow\downarrow} - N^{\uparrow\uparrow}}{N^{\uparrow\downarrow} + N^{\uparrow\uparrow}} = a_{11}P_1^S P_1^T + a_{22}P_2^S P_2^T + a_{33}P_3^S P_3^T$$

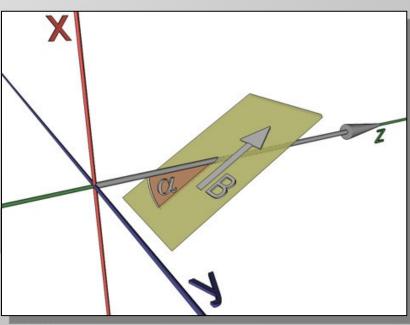
- Polarisiere Radiatorfolie durch Magnetisierung in Folienebene,

$$P_1^T = P^T \cdot \sin \alpha \quad P_3^T = P^T \cdot \cos \alpha$$

- Damit wird die Zählratenasymmetrie zu:

$$A(\alpha) = a_{11} P_1^S \left(P^T \sin \alpha \right) + a_{33} P_3^S \left(P^T \cos \alpha \right)$$

Addition von $A(\alpha)$ und $A(-\alpha)$ eliminiert $\sin(\alpha)$ – Term



II.) Polarisation der Photonen

c) Moeller-Polarimetrie

- Messung der Strahlpolarisation
- Messung der Zählratenasymmetrie durch Koinzidenzmessung der beiden gestreuten Elektronen
- Vorteil: Moellerpolarimetrie kann parallel zur Datennahme laufen
 - ⇒ vgl. Messung der Linearpolarisation: spezieller Radiator verwendet

III.) Bestimmung des Photonenflusses

- Der Photonenfluss

- "Die Anzahl der im Radiator erzeugten Photonen, die das Target durchqueren."
- Naiv: $N_{\gamma} = N_{e,T}$ (im idealen Fall)
 - ⇒ Tagger-Effizienz eins, kein Untergrund, keine Photonverluste
 - ⇒ Nicht realisierbar
- Ansatz: $N_{\gamma} = N_{e,T} \cdot P_{\gamma}$
 - => Alle im Radiator erzeugten Photonen erreichen Target mit einer bestimmten Wahrscheinlichkeit Photon-Definitionswahrscheinlichkeit.

III.) Bestimmung des Photonenflusses

- Die Photon-Definitionswahrscheinlichkeit
- "Wahrscheinlichkeit, mit der das zu einem Signal im Tagger gehörende Photon das Target erreicht"
- -Photon hinterlässt Elektron im Tagger & Signal im Photondetektor hinter Target

$$P_{\gamma} = \frac{N_e \wedge N_{\gamma}}{N_e}$$

- $-P_{\gamma} < 1$, da:
 - \Rightarrow nicht alle Photonen der Bremsstrahlung unter 0° emittiert werden,
 - ⇒ Elektronen aus dem Strahl elastisch an Hüllenelektronen der Radiatoratome streuen und in das Hodoskop gelangen können.

III.) Bestimmung des Photonenflusses

- Zusammenhang mit dem Wirkungsquerschnitt
- Wirkungsquerschnitt:

$$d\sigma = \frac{\text{#der in } dA \text{ gestreuten Teilchen / Zeit}}{\text{#der einfallenden Teilchen / (Zeit &Fläche)}} = \frac{|j_{streu}|}{|j_{ein}|} \cdot dA$$

- I j_{ein} l'entspricht dem Fluss einfallender Teilchen, hier: Photonen
 - ⇒ Direkter Zusammenhang zwischen WQ und Photonenfluss.

Zusammenfassung I

- Energiemarkierung
- Erzeugung der Photonen über Bremsstrahlung
- Indirekte Messung der Photonenenergie über Elektronenenergie
- Energie rekonstruierbar durch Auftreffpunkt im Hodoskop nach Ablenkung

- Bremsstrahlung
- Spektrum der Photonen folgt ~1/Energie, Emission in Vorwärtsrichtung
- Linearpolarisation durch Bremsstrahlung an Kristall → Bragg-Bedingung

Zusammenfassung II

- Polarisation

- Lineare Polarisation über Bremsstrahlung an Kristall
 - ⇒ Charakteristisches Spektrum durch Intensitätseinbrüche
- Zirkulare Polarisation durch Bremsstrahlung longitudinal polarisierter Elektronen
 - => Messung über die spin-abhängige Moeller-Streuung
 - Photonenfluss
- Anzahl der Photonen aus Bremsstahlung, die das Target durchqueren
- Anzahl der Photonen kleiner als Anzahl der Elektronen im Tagger
- Photondefinitionswahrscheinlichkeit verbindet diese beiden Größen
- Essentiell zur Bestimmung des Wirkungsquerschnittes

Literatur

- Verwendete Literatur
- Diplomarbeiten
 - \Rightarrow [AS] Axel Schmidt
 - ⇒ Kathrin Fornet-Ponse
 - ⇒ Jürgen Wißkirchen
 - ⇒ Holger Eberhardt
- CB-ELSA / TAPS Note: Nr 3.
- CB-ELSA Note N° 9
- Seminarvortrag I. Stefan Patzelt

A Dimensionsloses Einheitensystem

$$-\hbar = c = m_e = 1$$

- Erhalte ursprüngliche Einheiten durch geeignete Multiplikation

 \Rightarrow Längen: $\hbar/m_e c$

 \Rightarrow Impulse: $m_e C$

 \Rightarrow Energien: $m_e c^2$