Anregungsspektrum des Nukleons

Seminarvortrag zum Studentenexperiment an ELSA

14.11.2007

Dominic Krönung

Übersicht

 Erste Hinweise auf innere Struktur des Nukleons

• Resonanzen in
$$\pi^+ p \rightarrow \pi^+ p$$

- Quarkmodelle zur Beschreibung des Anregungsspektrums
- Resonanzen in Photoproduktion

Erste Hinweise auf innere Struktur des Nukleons

Das Nukleon

Kein punktförmiges Teilchen

- Nukleon besitzt Substruktur und eine Ausdehnung
- Experimentelle Hinweise auf Substruktur durch Stern, Hofstadter und Fermi

1933 Otto Stern:

- Versuche zur Untersuchung des magnetischen Moments von Protonen
- Für punktförmiges Teilchen erwartet man $\mu_p = 1\mu_K$ und $\mu_n = 0$

Ergebnisse

- Ergebnis: Proton hat magnetisches Moment von ca.2,5 μ_{K}
- Weitere Experimente zeigen das magnetische Moment von Protonen ist 2,79 µ_K
- Neutron hat ein magnetisches Moment von $-1,91 \mu_{K}$

- Nukleonen haben keine punktförmige Ladungsverteilung
- Ladungsverteilung ist zu untersuchen
- Ausdehnung ist zu bestimmen

1961: Hofstadter streut Elektronen an Protonen (H-Targets)

 Energie der Elektronen zwischen 400MeV und einigen GeV

Austausch eines virtuellen Photons

e

e

Proton

Formfaktoren und Ladungsverteilungen

Elektrischer Formfaktor des Protons

Ergebnis

- Experimentelle Daten geben einen Zugang zur Ladungsverteilung beim Proton (exponentielle Ladungsverteilung)
- Es kann ein mittlerer quadratischer Radius von 0,8fm² bestimmt werden

Tief inelastische Streuung

- Bestimmung des Formfaktors bei tief inelastischer Streuung
- Erste Hinweise auf punktförmige Konstituenten im Proton

1951: Fermi macht Streuversuche mit п an Proton

п⁺р → п⁺р

 Entdeckung einer Überhöhung im Wirkungsquerschnitt bei Pionen Energie 195MeV

 Entspricht einer invarianten Massen von 1232 MeV

Wirkungsquerschnitt

Weitere Versuche zeigen:

- Resonanz bei 1232MeV (Δ-Resonanz) ist erster Anregungszustand des Nukleons
- Weitere Resonanzen bei höheren Energien
- Resonanzen können nur durch Anregung innerer Freiheitsgrade erklärt werden

Resonanzen in π⁺p-Streuung

 Heutiges Bild vom Nukleon: 3 Quarks, Gluonen, Mesonenwolke

Π⁺ Proton Streuung

Π+ Proton Streuung

- Δ -Resonanz wird auch P₃₃ genannt
- P: Bahndrehimpuls des auslaufenden Pions
- 3:= 3/2 Isospin I der Resonanz
- 3:= 3/2 Gesamtdrehimpuls J der Resonanz

Wie bekommt man diese Quantenzahlen?

- Isospin: Proton hat Isospin $I_z + 1/2$ und π^+ hat Isospin $I_z + 1$
- π⁺ wechselwirkt mit Proton stark
- Isospin ist bei starker Wechselwirkung Erhaltungsgröße

Bestimmung von J

Theoretische Überlegung:

- Π⁺ hat einen
 Bahndrehimpuls I_n=1
- Wähle
 Quantisierungsache
 entlang der Bahn des
 einfallenden Pions

Drehimpulswellenfunktionen

Dann sind die Drehimpulswellenfunktionen der Teilchen:

- π⁺: Φ(j;m)= Φ(l;m)= Φ(1;0)
- p: a(j;m)= a(1/2;±1/2)
- Als Produkt erhält man für den Zwischenzustand: Ψ(3/2;1/2)

Zwischenzustand

- Zerfällt der Zwischenzustand kann
 Proton sein Spin umdrehen oder nicht
- Clebsch-Gordon-Koeffizienten geben die Wahrscheinlichkeit f
 ür diese Prozesse
- Drehimpulserhaltung muss beachtet werden

Zerfall des Zwischenzustands

$$\Psi\left(\frac{3}{2};\frac{1}{2}\right) = \sqrt{\frac{1}{3}} \Phi'(1;1) \alpha'\left(\frac{1}{2};-\frac{1}{2}\right) + \sqrt{\frac{2}{3}} \Phi'(1;0) \alpha'\left(\frac{1}{2};\frac{1}{2}\right)$$
$$\Phi'(1;1) \text{ und } \Phi'(1;0) \text{ sind Kugelflächenfunktionen}$$
$$\Phi'(1;1) = \sqrt{\frac{3}{4\pi}} \sin \Theta \frac{e^{i\varphi}}{\sqrt{2}}$$
$$\Phi'(1;0) = \sqrt{\frac{3}{4\pi}} \cos \Theta$$
$$I(\Theta) = \Psi^* \Psi \propto 1 + 3\cos^2 \Theta$$

Winkelverteilung der auslaufenden Pionen

P₃₃-Resonanz

- Δ -Resonanz ist eine P₃₃-Resonanz
- P ist Drehimpuls des auslaufenden Pions
- 3:=3/2 Isospin des Zwischenzustands
- 3:=3/2 Gesamtdrehimpuls des Zwischenzustands

Quarkmodelle des Baryons

Das Baryon

Baryon besteht aus 3 Quarks

 Betrachte zur Vereinfachung nur 3 Flavours (u,d,s)

Quark hat Spin 1/2

Wellenfunktion des Baryons

- Im gebundenen Zustand koppeln
 Wellenfunktionen der Quarks zu einer
 Wellenfunktion
- |qqq>_A=|color>_A|space;spin;flavour>_S
- Gesamtwellenfunktion muss antisymmetrisch sein, da Bayonen Fermionen sind

Wie koppeln Wellenfunktionen

Beispiel: 2 Spin 1/2 Teilchen koppeln

Schreibweise: $2 \otimes 2 = 3_{s} \oplus 1_{A}$

Symmetrische Wellenfunktion

 3_S: 2 Spin 1/2 Teilchen koppeln zu den Wellenfunktionen

$$\left|\frac{1}{2};\frac{1}{2}\right\rangle$$

$$\frac{1}{\sqrt{2}}\left(\left|\frac{1}{2};-\frac{1}{2}\right\rangle+\left|-\frac{1}{2};\frac{1}{2}\right\rangle\right)$$

$$\left|-\frac{1}{2};-\frac{1}{2}\right\rangle$$

3 symmetrische Wellenfunktionen

Antisymmetrische Wellenfunktion

 1_A: 2 Spin 1/2 Teilchen koppeln zu der Wellenfunktion

$$\frac{1}{\sqrt{2}} \left(\left| \frac{1}{2}; -\frac{1}{2} \right\rangle - \left| -\frac{1}{2}; \frac{1}{2} \right\rangle \right)$$

1 antisymmetrische Wellenfunktion

Kopplung der Quarks

|flavour> $3 \otimes 3 \otimes 3 = 10_{s} \oplus 8_{M} \oplus 8_{M} \oplus 1_{A}$ $|\text{spin}\rangle$ $2 \otimes 2 \otimes 2 = 4_s \oplus 2_M \oplus 2_M$ |spin;flavour> $6 \otimes 6 \otimes 6 = 56_{\rm s} \oplus 70_{\rm m} \oplus 70_{\rm m} \oplus 20_{\rm s}$

Das Oktett und Dekuplet

$56_{\rm S} = {}^4 10 \oplus {}^2 8$

Ortswellenfunktion

- Symmetrie der Wellenfunktion legt die möglichen Anregungszustände fest
- Mit einem passenden Potential kann das Anregungsspektrum berechnet werden

 $|\text{space}\rangle$

 $N=N_{\rho}+N_{\lambda}$ $L=I_{\rho}+I_{\lambda}$

Quarkmodell nach Isgur und Karl

Nicht relativistisches Modell

Ein Gluonaustausch

Starke Spin-Spin-Wechselwirkung

Spin-Spin-Wechselwirkung

p(938MeV) →∆(1232MeV)
 ist ein Spinflip

 Spinflip ändert Masse um ca. 300MeV

Zu lösende Schrödingergleichung

 $H\psi = E\psi$ mit $\hat{\mathbf{H}} = \sum_{i} m_{i} + \frac{p_{i}^{2}}{2m_{i}} + \sum_{i < j} V^{ij} + H_{hyp}^{ij}$

Spin-Spin-Wechselwirkung

$$H_{hyp}^{ij} = \frac{2\alpha_{s}}{3m_{i}m_{j}} \left(\underbrace{\frac{8\pi}{3}\vec{S}_{i}\vec{S}_{j}\delta^{3}(\vec{r}_{i}\vec{r}_{j})}_{1} + \underbrace{\frac{1}{r_{ij}^{3}} \left(\frac{3(\vec{S}_{i}\vec{r}_{j})(\vec{S}_{j}\vec{r}_{i})}{r_{ij}^{2}} - \vec{S}_{i}\vec{S}_{j}\right)}_{2} \right)$$

I Spin Spin Wechselwirkung

2 Tensorkraft

Confinement

- V^{ij}: Potential ist linear bei großen Abständen und verhält sich wie Coulomb-Potential bei kleinen Abständen
- Sorgt f
 ür das confinement
- Wird in der Praxis durch harmonischen
 Oszillator + Störung genähert

Beobachtetes Spektrum

Modell und Beobachtung für ersten Anregungszustand

Modell und Beobachtung für den 2. Anregungszustand

N-Resonanzen

Modell von Metsch, Petry, u.a.

Δ-Reonanzen

Problem aller Modelle

- Es gibt so genannte "missing resonances"
- Gibt es Quark-Diquark Struktur?
- Gibt es eingefrorene Freiheitsgrade?
- Koppeln diese Resonanzen nicht an пN?

Resonanzen in Photoproduktion

Pion Proton und γ Proton Streuung

 Mit yN Streuung sieht man die gleichen Resonanzen wie bei der Pion Streuung

Reaktionskanäle bei Photoproduktion

Es gibt zusätzliche Kanäle

Durch Polarisationsobservablen können sich überlappende Resonanzen aufgelöst werden

Mehr dazu im nächsten Vortrag

Danke für Ihre Aufmerksamkeit