Bestimmung der Δ -Resonanz

Auswertung der Daten

Teilchendetektoren und Experiment an ELSA

Naëmi Leo

naemileo@uni-bonn.de

30. Januar 2008

Das	Exper	riment

Inhalt

1 Das Experiment

2 Analyse des π_0 -Peaks

3 Bestimmung der Δ -Resonanz

Ziel des Versuchs

Die Reaktion

Bremsstrahlung: Protonenanregung: Pionenzerfall:

 $\begin{array}{c} e \rightarrow e + \gamma \\ \gamma + p \rightarrow \Delta^+ \rightarrow p + \pi_0 \\ \pi_0 \rightarrow \gamma + \gamma \end{array}$

Bestimmung der π_0 -Masse

 Energiebestimmung mit zwei Kristallblöcken in fester Geometrie

Bestimmung der Masse der Δ -Resoonanz

• Mit Hilfe energiemarkierter Photonen (*Tagging*) und der schon bestimmten Pionenenergie

Das Experiment o●○○ Analyse des π_0 -Peaks

Fazit 0000

Wann? Wo? Was?

1.2 GeV Strahlenergie

- 11.07., 19:00 bis 12.07., 13:00 (18 Stunden)
- \Rightarrow 394609 Events

800 MeV Strahlenergie

- 12.07., 13:20 bis 13.07., 24:00 (35 Stunden)
- \Rightarrow 48511 Events
 - Andere Raten, da Strahlstrom anders

Das Experiment ○○●○ Analyse des π_0 -Peaks

Bestimmung der Δ-Resonanz

Fazit 0000

Aufbau

Das Experiment	Analyse des π_0 -Peaks	Bestimmung der Δ-Resonanz	Fazit
○○○●	000000000000000000000000000000000000	000000000000	0000

Analyse des π_0 -Peaks

Datenrekonstruktion

Datenauslese

Was haben wir weggeschrieben?

- 2.9 Kristalle, jeweils HIGH- und LOW-Range (= 36)
- In drei ADCs weggeschrieben \Rightarrow 48 ADC-Werte (11 Bit)
- \Rightarrow mit Eichung zu Energien umrechnen
 - Ein Koinzidenzzähler (16 Bit)
- \Rightarrow Enthält Informationen, welche Taggerlatten gefeuert haben
 - 11% Scalerereignisse
- \Rightarrow 32 weitere Einträge in der Zeile, für Auswertung unwichtig

Welche Informationen wurden verwendet?

- Im Kristallblock deponierte Energie (Clustering)
- "Trefferposition" (= maximaler Eintrag im ADC)
- Koinzidenzzähler

Analyse des π_0 -Peaks

Bestimmung der Δ -Resonanz

Fazit 0000

Datenrekonstruktion

Überläufe im LOW-Bereich

- Etwa 7% aller Ereignisse sind im LOW-Bereich in Sättigung gegangen
- \Rightarrow Zur Auswertung HIGH-Range benutzt

Das	Experiment

Bestimmung der Δ -Resonanz

Datenrekonstruktion

Analyse des π_0 -Peaks

Bestimmung der Δ -Resonanz

Fazit 0000

Pionrekonstruktion

Bestimmung der Pionenmasse

Energie-Impulserhaltung:

$$\begin{pmatrix} E_{\pi} \\ \vec{p_{\pi}} \end{pmatrix} = \begin{pmatrix} E_{\gamma 1} \\ \vec{k_{\gamma 1}} \end{pmatrix} + \begin{pmatrix} E_{\gamma 2} \\ \vec{k_{\gamma 2}} \end{pmatrix}$$

Damit (und $m_{\gamma} = 0$):

$$m_{\pi}^{2} = 2E_{\gamma 1}E_{\gamma 2}\left(1-\cos\left(\vartheta\right)\right)$$

Mit $\vartheta = 2 \cdot 29.4^{\circ}$ Winkel zwischen den detektierten Photonen:

Analyse des π_0 -Peaks

Bestimmung der Δ -Resonanz

Analyse des π_0 -Peaks

Fazit 0000

Analyse des π_0 -Peaks

Bestimmung der Δ -Resonanz

Analyse des π_0 -Peaks

Bestimmung der Δ -Resonanz

Das Experiment 0000	Analyse des π_0 -Peaks	Bestimmung der Δ-Resonanz 000000000000	Fazit 0000
Korrekturen			
Winkelkorre	2 tur		

- Abstand Target-Detektor: 40 cm
- Mittlere Kristallbreite: 22.35 mm
- \Rightarrow Winkelunterschied zwischen einzelnen Kristallen: $\Delta \vartheta = 3.21^{\circ}$

$$m_{\pi}^2 = 2E_{\gamma 1}E_{\gamma 2}\left(1-\cos\left(\vartheta+\Delta\vartheta_1+\Delta\vartheta_2
ight)
ight)$$

Das	Experiment	

Bestimmung der Δ -Resonanz

Korrekturen

800 MeV

Bestimmung der Δ -Resonanz

Korrekturen

1200 MeV

Korrekturen

Wie man sieht, sieht man nichts...

Analyse des π_0 -Peaks

Bestimmung der Δ -Resonanz

Fazit 0000

Korrekturen

Unvollständige Energiesammlung

Invariante Masse zu niedrig \Rightarrow Energie zu niedrig detektiert Benutzter Kristall: CsI(TI)

Elektromagnetische Schauer

- Strahlungslänge X = 1.86 cmKristalllänge: 30 cm
- \Rightarrow Kein Problem!
 - Mouliére-Radius R = 3.57 cm Mouliére-Durchmesser etwa 7 cm Blockbreite: 3.2.235 cm ≈ 6.7 cm
- ⇒ Bei Treffer an der Kante oder der Ecke problematisch!

Das Experiment	Analyse des π_0 -Peaks	Bestimmung der Δ-Resonanz	Fazit
0000		000000000000	0000
Korrekturen			

 $c_{Mitte} = 0.891$

$$E_{korr} = c \cdot E_{alt}$$

1200 MeV

Das Experiment 0000	Analyse d	es π₀-Peaks ⊃00000000●0	Bestimmung der Δ-Resonanz 000000000000	F	⁼ azit 0000
Korrekturen					
Invarianto Masso mit Eid		massemiteichunghigh	Invariante Masso mit Eichung HIGH	massemiteichunghigh	
E.	andig, morr	Entries 48511 Mean 35.44		Entries 48511 Mean 35.44	
2200		RMS 34.42	103 -	RMS 34.42	

> ٥Ę

10²

n

800 MeV

 0 300 350 400 invariante Masse [MeV]

250 300 350 400 invariante Masse [MeV]

Analyse des π_0 -Peaks

Ergebnisse

Zwischenfazit

Ergebnis π_0

- Pionenpeak bei zu niedriger Energie erkennbar
- Winkelkorrektur wirkungslos
- Korrekturfaktoren für die Trefferposition viel zu hoch
- \Rightarrow Schmiert Peak nur aus
- \Rightarrow Mit den unkorrigierten Daten die Delta-Resonanz auswerten.
- \Rightarrow Jede Energie einzeln auswerten.

Ausserdem: Bei 800 MeV wird weniger Untergrund gemessen!

Das Experiment	Analyse des π_0 -Peaks	Bestimmung der ∆-Resonanz	Fazit
Aufbau			
Beobachtete	Reaktion		

universität**bonn**

Das Experiment 0000	Analyse des π_0 -Peaks 000000000000000000000000000000000000	Bestimmung der Δ-Resonanz ●●00000000000	Fazit 0000
Taggerdaten und Photonenenergie	2		
Photonenenergi	e		

Taggerinformationen aus Koinzidenzregister:

- Jede Taggerlatte entspricht einem Energiebereich
- Für jedes Taggerereignis gesamte Kinematik durchgerechnet

Bestimmung der Δ -Resonanz

taggergefeuert Entries 46121

Mean 9.635

RMS 3.604

14

46121

Taggerdaten und Photonenenergie

Taggerlatten

universität**bonn**

Analyse des π_0 -Peaks

Bestimmung der Δ -Resonanz

Taggerdaten und Photonenenergie

Multiplizität

Das	Expe	erii	me	

Bestimmung der Δ -Resonanz

Taggerdaten und Photonenenergie

Energiespektrum

Für FWHM der Δ -Resonanz: $E_{\gamma} = (264 - 419)$ MeV

Das Experiment	Analyse des π_0 -Peaks	Bestimmung der Δ -Resonanz	Fazit
0000	000000000000000000000000000000000000		0000
Pionenwinkel			

Pionenimpuls

Winkel des auslaufenden Pions

$$heta_{\pi} = rctan\left(rac{oldsymbol{p}_{\pi_{0},x}}{oldsymbol{p}_{\pi_{0},z}}
ight)$$

Analyse des π_0 -Peaks

Bestimmung der Δ -Resonanz

Fazit 0000

Pionenwinkel

Berechneter Pionenwinkel

Verteilung liegt im richtigen Bereich...

Das Experiment 0000	Analyse des π_0 -Peaks 000000000000000000000000000000000000	Bestimmung der ∆-Resonanz ○○○○○○●●○○○○	Fazit 0000
Missing Mass			
Missing Mass			

$$\gamma + p \rightarrow \Delta \rightarrow p + \pi_0$$

Energie-Impuls-Erhaltung:

$$\begin{pmatrix} E_{\gamma} \\ \vec{p}_{\gamma} \end{pmatrix} + \begin{pmatrix} m_{P} \\ \vec{0} \end{pmatrix} = \begin{pmatrix} E_{mm} \\ \vec{p}_{mm} \end{pmatrix} + \begin{pmatrix} E_{\pi} \\ \vec{p}_{\pi} \end{pmatrix}$$

Gibt Missing Mass:

$$m_{mm}^2 = (E_\gamma + m_P - E_\pi)^2 - (ec{p}_\gamma - ec{p}_\pi)^2$$

Da sollte die Protonenruhemasse rauskommen...

Bestimmung der ∆-Resonanz

Missing Mass

Taggerstruktur deutlich erkennbar

Analyse des π_0 -Peaks

Bestimmung der Δ -Resonanz

Fazit 0000

Protonenwinkel

Fehlender Protonimpuls

Impuls vom auslaufenden Proton

$$ec{p}_{\gamma}=ec{p}_{P}+ec{p}_{\pi}$$

$$p_{P,x} = p_{\pi,x}$$
 $p_{P,z} = p_{\gamma} - p_{\pi_z}$

Winkel des auslaufenden Protons

$$an(artheta_P) = rac{p_{P,x}}{p_{P,z}} = rac{p_{\pi,x}}{p_{\gamma} - p_{\pi,z}}$$

Analyse des π_0 -Peaks

Bestimmung der Δ -Resonanz

Fazit 0000

Protonenwinkel

Berechneter Protonenwinkel

Analyse des π_0 -Peaks

Bestimmung der Δ -Resonanz

Fazit 0000

Delta-Masse

Berechnung der Δ -Masse

Energie-Impuls-Erhaltung:

$$egin{pmatrix} m_\Delta \ ec{p}_\Delta \end{pmatrix} = egin{pmatrix} E_\pi \ ec{p}_\pi \end{pmatrix} + egin{pmatrix} E_P \ ec{p}_P \end{pmatrix}$$

Invariante Masse der Δ -Resonanz

$$m_{\Delta}^2=m_{\pi}^2+m_{mm}^2+2E_{\pi}E_P\left(1-\cos\left(heta_{\pi}+ heta_P
ight)
ight)$$

Mit:

$$E_{\pi} = E_{\gamma 1} + E_{\gamma 2}$$

 $E_{P} = m_{mm} + (E_{Beam} - E_{\gamma 1} - E_{\gamma 2})$

Analyse des π_0 -Peaks

Bestimmung der Δ -Resonanz

Delta-Masse

Taggerstruktur deutlich erkennbar.

Einen Δ -Peak in die Daten zu interpretieren ist sehr gewagt...

Pion-Nachweis

- Klappt ganz gut...
- ...wenn man von der zu niedrigen Masse absieht

Nachweis der Δ -Resonanz

- Systematischer Fehler durch zu niedrige Pionenmasse
- $\bullet\,$ Taggerauflösung zu niedrig, so dass Missing Mass und Δ nicht ordentlich auflösbar

Bestimmung der Δ -Resonanz

Verbesserungsvorschläge

Tagger

- Bessere zeitliche Auflösung
- ⇒ Multiplizität niedriger
 - Bessere räumliche Auflösung
- ⇒ Bessere Energieauflösung

Experiment

- Mehr Kristalle
- ⇒ Bessere Energiesammlung
 - Untergrund minimieren durch anderen Aufbau
 - Bessere Dokumentation

Auswertung

- Bessere Korrekturfaktoren
- Sytematischen Fehler korrigieren

Danke für's Zuhören!

40 / 40